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Benôıt Barbot, Nicolas Basset, Marc Beunardeau, and Marta Kwiatkowska
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Abstract. Monte Carlo model checking introduced by Smolka and Grosu
is an approach to analyse non-probabilistic models using sampling and
draw conclusions with a given confidence interval by applying statisti-
cal inference. Though not exhaustive, the method enables verification
of complex models, even in cases where the underlying problem is un-
decidable. In this paper we develop Monte Carlo model checking tech-
niques to evaluate quantitative properties of timed languages. Our ap-
proach is based on uniform random sampling of behaviours, as opposed
to isotropic sampling that chooses the next step uniformly at random.
The uniformity is defined with respect to volume measure of timed lan-
guages previously studied by Asarin, Basset and Degorre. We improve
over their work by employing a zone graph abstraction instead of the
region graph abstraction and incorporating uniform sampling within a
zone-based Monte Carlo model checking framework. We implement our
algorithms using tools PRISM, SageMath and COSMOS, and demon-
strate their usefulness on statistical language inclusion measurement in
terms of volume.

1 Introduction

Since the seminal work of Alur and Dill [1], timed automata (TAs) have been
widely studied in the context of real-time systems verification. Several algo-
rithms from the classical automata-theoretic verification were successfully lifted
to the timed case. In spite of this, many problems become undecidable, the most
important being the inclusion of timed languages. One way to circumvent un-
decidability is to employ statistical methods, where results are given with some
confidence level. However, timed automata are non-stochastic models and it is
not clear a priori with what probability to sample runs when performing statis-
tical experiments. A natural answer is given by the maximal entropy principle:
“without knowledge a priori on the distribution of probability to be taken, the
one with maximal entropy should be preferred” [13]. A maximal entropy stochas-
tic process for timed automata was recently proposed in [6]. Essentially, this is
the stochastic process that yields the most uniform sampling when the length of
the timed words tends to infinity. By uniform sampling we mean that all timed
words of a given length have the same density of probability to be chosen.



In this paper we propose several algorithms to achieve uniform sampling of
timed words in timed languages. The methods are based on the theory of vol-
umetry of timed languages recently developed by Asarin, Degorre and Basset
[3], which provides means for quantitative measurement of languages in terms
of volume. Here, we employ this theory to achieve statistical estimation of vol-
ume and demonstrate its usefulness for language inclusion measurement. The
accuracy of statistical estimation depends on the ability to uniformly sample
the executions. The method provided in [6], where the transitions of a TA were
annotated with probability functions so that the resulting stochastic process en-
ables random simulation in the most uniform way possible, is based on spectral
attributes of a functional operator Ψ (an analogue in the timed automata con-
text of the adjacency matrix of a graph) [3]. Unfortunately, it is not practical, as
it relies on the region graph abstraction and the computation of eigenfunctions.
In this paper, we overcome this problem by adopting a zone-based approach
and approximating the probability functions of [6] with quotients of the volume
functions.

Contributions. (i) We provide a zone-based computation of volume functions
for TAs, which enables the first practical implementation of volumetry of timed
languages. (ii) We develop three methods (Method 1-3) to sample in a (quasi)
uniform manner timed words in a language recognised by a deterministic timed
automaton (DTA). In particular, we propose a receding horizon framework that
allows us to approximate the maximal entropy stochastic process discussed
above. (iii) We apply uniform sampling for DTAs to uniform sampling and
volume measurement for arbitrary timed languages, provided the membership
problem for the language is decidable. (iv) We have implemented the algorithms
presented here in PRISM [14] (for the splitting of the DTA into zones), Sage-
Math [18] (for the computation of volume functions) and COSMOS [4] (for the
random generation of timed words and property checking) and illustrate them
on several examples, with encouraging results.

Related work. The theory of the volumetry of timed languages has been studied
and applied to robustness analysis [3], timed channel coding [2] and combina-
torics of permutations [5], but has not yet been applied in practice.

Monte Carlo model checking was proposed in [11] for discrete models to ran-
domly explore their behaviour by means of simulating execution paths. Similarly,
statistical model checking [19] uses simulation to verify temporal logic proper-
ties with statistical guarantees, and has been applied to stochastic timed/hybrid
systems [9]. This avoids state-space explosion, thus ensuring the feasibility of
verification of complex models, and has also been used to check undecidable
properties [9]. Here we implement Monte Carlo techniques for TAs.

Monte Carlo or statistical model checking usually employs an isotropic ran-
dom walk to explore the executions (as explained in [17,10] for discrete models).
This involves choosing uniformly at random, at each step of the simulation, the
next transition from those available. It has been argued that the isotropic meth-
ods are not able to efficiently perform uniform sampling of the behaviours (see
e.g. the pathological examples in [17] for sampling of lassos and [10] for sampling
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paths in a finite-state automaton). Here we implement uniform sampling based
on the tool COSMOS, but the techniques are more generally applicable and can
be implemented in other tools, for example UPPAAL-SMC [9], which supports
user-defined distributions.

Statistical model checkers such as UPPAAL-SMC consider timed automata
augmented with probability distribution on transitions that are either user-
defined or given “by default”. Thus, the model to verify is already probabilistic
and specifications are written in temporal logic with probabilistic operators. Our
work addresses a different and novel question: how can one use statistical exper-
iments on a non-probabilistic timed language and draw conclusions about that
language, without being given probability distributions on it?

2 Preliminaries

2.1 Timed languages and volumetry

A timed word α = (t1, a1) . . . (tn, an) is a word over the alphabet R≥0 × Σ,
where R≥0 denotes the set of non-negative reals and Σ is a finite alphabet of
events. Times ti represent delays between events ai−1 and ai. Throughout this
paper, delays will be bounded5 by an integer constant M . A timed language L
is a set of timed words. Given n ≥ 0, we denote by Ln the timed language L
restricted to timed words of length n. For every timed language L and every word
w = w1 . . . wn ∈ Σn, we define PLw = {(t1, . . . , tn) | (t1, w1) . . . (tn, wn) ∈ L},
and denote by Vol(PLw ) its (hyper-)volume.

Example 1 (Running example). Examples of such hyper-volumes are given in
Fig. 1. Anticipating what follows, these sets correspond to the timed language
restricted to timed words of length 2 of the timed automaton depicted in Fig. 2
(Left).
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Fig. 1. From left to right, languages PLab, P
L
aa, PLba and PLbb for the running example

(Example 1). The darker areas corresponds to initial clock vector (x, y) = (0.5, 0).

For a fixed n, we define the n-volume of L as follows:

Vol(Ln) =
∑
w∈Σn

Vol(PLw ) =
∑
w1∈Σ

∫ M

0

· · ·
∑
wn∈Σ

∫ M

0

1PLw (t)dt1 · · · dtn.

5 Our approach to timed languages is based on volume and does not apply, in its
present form, to unbounded delays that result in infinite volume.
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a,
0 < x < 2,
0 < y < 4
y := 0

b,
0 < x < 3,
0 < y < 2
x := 0
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a, y := 0

b, x := 0

a, y := 0 b, x := 0

b, x := 0

a, y := 0

Fig. 2. Left: a DTA. Right: the same DTA obtained after applying the forward reacha-
bility algorithm. Entry zones are represented in red. Guards for a and b are the same in
the two TAs. The blue part represents clock vectors reachable through entry zones by
time elapsing. In location 2, the guard of transition b should be split along the dotted
line to obtain the split DTA of Fig 3.

Continuing the example; the hyper-volume for dimension 2 is calculated as

Vol(L2) = Vol(PLab) + Vol(PLaa) + Vol(PLba) + Vol(PLbb) = 3.5 + 2 + 4 + 2 = 11.5.

We define the uniform probability distribution on a timed language L by assigning
weight 1/Vol(Ln) to every timed word of length n. The main purpose of this
article is to show how to sample according to that distribution when the language
is recognised by a timed automaton. For instance, the probability of a uniformly
sampled timed word to fall in the set E = {(t1, b)(t2, a) | t1 ∈ (0, 1), t2 ∈ (0, 2)}
is Vol(E)/Vol(L2) = 2/11.5 ≈ 0.17.

Given two timed languages L, L′ over the same alphabet of events Σ, we
say that L′ is a tight under-approximation of L if, for all w ∈ Σ∗, PL′w ⊆ PLw
and Vol(PLw \PL

′

w ) = 0 ; hence Vol(PLw ) = Vol(PL
′

w ). In particular, timed words
uniformly sampled in L′ are uniformly sampled in L.

2.2 Timed automata

Let X be a finite set of non-negative real-valued variables called clocks. Here we
assume that clocks remain bounded by a constant M ∈ N. A clock constraint has
the form x ∼ c or x−y ∼ c where ∼∈ {≤, <,=, >,≥}, x, y ∈ X, c ∈ N. A guard
is a finite conjunction of clock constraints; it is called open if its constraints
involve only strict inequalities. A zone is a set of clock vectors x ∈ [0,M ]X

satisfying a guard. For a clock vector x ∈ [0,M ]X and a non-negative real t, we
denote by x+ t (resp. x− t) the vector x+ (t, . . . , t) (resp. x− (t, . . . , t)).

A timed automaton (TA) A is a tuple (Σ,X,Q, i0, F,∆) where Σ is a finite
set of events; X is a finite set of clocks; Q is the finite set of locations; i0 is the
initial location; F ⊆ Q is the set of final locations; and ∆ is the finite set of
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transitions. Any transition δ ∈ ∆ has an origin δ− ∈ Q, a destination δ+ ∈ Q,
a label aδ ∈ Σ, a guard gδ and a reset function rδ determined by a subset of
clocks B ⊆ X: it resets to 0 all the clocks in B and does not modify the value
of the other clocks.

A timed transition is an element (t, δ) of A def
= [0,M ] ×∆. The delay t rep-

resents the time before firing the transition δ. A state s = (q,x) ∈ Q× [0,M ]X

is a pair of a location and a clock vector. Given a state s = (q,x) and a timed
transition α = (t, δ) ∈ A, the successor of s by α is denoted by sα and defined
as follows. If δ− = q and x + t satisfies the guard gδ then sα = (δ+, rδ(x + t))
else sα = ⊥. Here and in the rest of the paper ⊥ represents undefined states.
A sequence of timed transitions is called a timed path. We extend the successor
action to timed paths by induction: sε = s and s(αα′) = (sα)α′ for all states s,
timed transitions α ∈ A and timed paths α′ ∈ A∗. The initial state of the timed
automaton is s = (i0,0). The labelling of a timed path (t1, δ1) . . . (tn, δn) is the
timed word (t1, aδ1) . . . (tn, aδn) ∈ ([0,M ]×Σ)∗. The timed language L(A) of a
timed automaton A is the set of timed words that are labellings of timed paths
α such that sα ∈ F × [0,M ]X . We also write Ln(A) instead of (L(A))n.

For a guard g, we denote by TE−1(g) the set of clock vectors from which g can
be reached when time elapses; formally, TE−1(g) = {x | ∃t ≥ 0,x+ t ∈ g}. Given
a state s = (q,x) we denote by ∆(s) the set of transition available from s, that
is such that δ− = q and x ∈ TE−1(gδ). Given a state s = (q,x) and a transition

δ ∈ ∆(s), we define lbδ(s)
def
= inf {t|x+ t ∈ gδ} and ubδ(s)

def
= sup {t|x+ t ∈ gδ}

so that the condition x+ t ∈ gδ is equivalent to t ∈ (lbδ(s),ubδ(s)).
A deterministic timed automaton (DTA) is a TA such that no clock vector

can satisfy guards of pairwise distinct transitions with the same label and origin.
This implies that timed words and timed paths of a DTA are in one-to-one
correspondence. We are interested in the prefixes of infinite timed words of a
DTA. To be sure that Ln(A) contains exactly the prefixes of size n, we consider
only DTAs that satisfy the two following conditions: (i) every location is final,
(ii) from every reachable state, there is a timed transition that can be taken.

2.3 Equations on timed languages and volumes

Given a DTA A, we denote by Ln(s) the n-th timed language recognised from a
state s and defined inductively as follows: L0(s) = {ε}, and

Ln+1(s) =
⋃

δ∈∆(s)

⋃
t∈I(s,δ)

(t, aδ)Ln(s(t,δ)) (1)

For the running example and initial state [q, (0.5, 0)] we have:

L2([q, (0.5, 0)]) =
⋃

t∈(0,1.5)

(t, a)L1([q, (0.5 + t, 0)]) ∪
⋃

t∈(0,2)

(t, b)L1([q, (0, t)]). (2)

The language L2([q, (0.5, 0)]) is depicted in Fig 1.
We also parametrise the volume by the initial state and define the n-th vol-

ume function as vn(s) = Vol(Ln(s)). These functions can be defined recursively
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[l0, (0, 0)] [l1, (x, 0)] [l2, (0, y)] [l3, (x, 0)]

v0 1 1 1 1

v1 4 −x+ 4 −y + 4 −2x+ 5

v2 15 −4x+ 15 1
2
y2 − 4y + 15 − 1

2
x2 − 6x+ 35

2

v3
335
6

−15x+ 335
6
− 1

6
y3 + 2y2 − 15y + 335

6
− 1

6
x3 − 1

2
x2 − 25x+ 133

2

Table 1. First volume functions vn[li, (x, y)] associated to the TA of Fig. 3.

by replacing union over intervals by integrals and union over transitions by finite
sums in (1). We obtain v0(s) = 1 and

vn+1(s) =
∑

δ∈∆(s)

∫ ubδ(s)

lbδ(s)

vn(s(t,δ))dt, (3)

For the running example, passing to volumes in (2) yields

v2([q, (0.5, 0)]) =

∫ 1.5

0

v1([q, (0.5 + t, 0)])dt+

∫ 2

0

v1([q, (0, t)])dt. (4)

A key idea used in [3,6] is to rewrite (3) as

vn+1(s) = Ψ(vn)(s) (5)

where Ψ is an integral operator defined by

Ψ(f)(s) =
∑

δ∈∆(s)

Ψδ(f)(s) with (6)

Ψδ(f)(s) =

∫ ubδ(s)

lbδ(s)

f(s(t,δ))dt. (7)

Thus, volume functions are defined via iteration of the operator Ψ on the constant
function 1: vn = Ψn(1). In [3,6], the state space was decomposed into regions,
which guaranteed algebraic properties such as polynomial volume functions at
the price of an explosion of the number of locations of the TA. A TA before
such a decomposition into regions has volume functions that are complicated
(piecewise defined), and hence difficult to handle in practice. Here we want to
keep volume functions simple (polynomial) while keeping the set of locations
small. For this we adopt a zone-based approach.

The idea of the zone-based decomposition described in the next section is to
split the state space into several pieces in which the functions lbδ(s) and ubδ(s)
have simple form, ensuring that every volume function vn = Ψn(1) restricted to
any location is polynomial (see Table 1).

3 Volume function computation for DTAs

In this section we explain how to transform a DTA A into a DTA A′ called split
DTA that facilitates efficient volume computation.
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Decomposition into zones. We first apply a forward reachability algorithm, im-
plemented for instance in PRISM [14], which returns the so-called forward-
reachability graph, that is, a finite graph with annotations, which we view as
a DTA (the annotations are essentially, for each edge δ, the guard gδ and label
aδ and, for each location l, the zone Zl which is entered). Formally, we say that
a TA is decomposed into zones if, for every l ∈ Q, there is a zone Zl called
the entry zone of l, such that the entry zone of the initial state is {0} and, for
every transition δ, the successors of states in {δ−} × Zδ− through δ with some
delay are in {δ+} × Zδ+ , that is, {rδ(x + t) | x ∈ Zδ− ,x + t ∈ gδ} ⊆ Zδ+ . We
denote by S = ∪l∈Q{l} × Zl the set of states corresponding to entry zones. The
forward-reachability graph for the running example is given in Fig. 2 (Right).

Guard split. Let δ be the transition from location 2 to location 3 in the automa-

ton of Fig. 2 (Right), then gδ
def
= (0 < x < 3)∧(0 < y < 2). Then one can see that

ubδ(2, (x, 0)) = 2 if x ∈ (0, 1) (due to guard y < 2) and ubδ(2, (x, 0)) = 3 − x
if x ∈ (1, 2) (due to guard x < 3). The guard gδ thus needs to be split into two
(along the dotted line in the figure) to achieve a simpler form for ubδ. It is well
known how to get the tightest constraints of a guard and get rid of redundant
constraints using the Floyd-Warshall algorithm (see e.g. [7] ). A guard is said
to be upper-split (lower-split) if there is at most one useful constraint (that is,
not implied by other constraints) of the form xj < a (xj > a). The guard gδ
discussed above is not upper-split as the two constraints x < 3 and y < 2 are
both useful. Analogous definitions hold for lower-bounds and a guard is said to
be split if it is both lower-split and upper-split.

Pre-stability. A second phenomenon we want to avoid is when the set of available
transitions ∆(q,x) is not constant on the entry zone of q. A TA decomposed
into zones is called pre-stable if, for every location q and clock vector x ∈ Zq,
the set of transitions ∆(q,x) is exactly the set of transitions δ whose origin
is q. Equivalently, a TA is pre-stable if Zδ− ⊆ TE−1(gδ) for every δ. In case
we detect a transition such that Zδ− 6⊆ TE−1(gδ) we will split the zone Zδ− to
isolate TE−1(gδ)∩Zδ− from its complement. Continuing the example above, after
splitting gδ the functions associated to each new guard are null for x ∈ (0, 1)
or x ∈ (1, 2). Location 2 is split into two locations of the final TA of Fig. 3:
l1 for (0, 1) and l3 for (1, 2). Every incoming transition to location 2 is split
accordingly into two transitions (one orange to l1 and one purple to l3). A TA
is called pre-stable6 if, in addition to being decomposed into zones, it also holds
that Zδ− ⊆ TE−1(gδ) for every δ.

Trimming. Last but not least, we say that a TA is trimmed if the set of outgoing
transitions of each location is non-empty. A TA is called split if it is pre-stable,
trimmed and all the guards of its transitions are split and open. It implies,
in particular, that, for every entry state s ∈ S, ∆(s) is not empty and for all

6 In the literature pre-stability is defined for both discrete and timed transitions. Here
we take both transitions in one step and this leads to a weaker condition.
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transition δ ∈ ∆(s) it holds that ubδ(s)− lbδ(s) > 0. Note that opening guards,
that is, transforming large inequalities into strict ones is made wlog. as it only
removes a part of the language that has a null volume measure.

Splitting algorithm. We propose an algorithm to transform a DTA into a split
DTA such that the language of the latter is a tight under-approximation of the
language of the former (see Theorem 1). First, we apply a forward reachability
algorithm to obtain a DTA decomposed into zones and open its guards. Then
we successively split zones that falsify pre-stability and guard split conditions,
until the conditions are satisfied in the DTA. The splitting algorithm maintains
a stack of transitions that need to be checked, which initially contains all the
transitions. As the algorithm proceeds, transitions are popped from the stack
and are checked against pre-stability and guard split conditions. If one test fails,
the zone (or guard) is split accordingly into several zones (or open guards) and
the transitions that are affected are added to the stack (incoming transitions to,
and outgoing transitions from the split zone). When no more transition need to
be checked (i.e. the stack is empty), the TA is split and the algorithm terminates.
This occurs in a finite number of steps since transitions are added to the stack
only when a zone is split into strictly smaller sub-zones, and there are finitely
many zones7.

Theorem 1. Given a DTA A, one can construct (using the algorithm sketched
above) a split DTA A′ that recognises a tight under-approximation of L(A).

The splitting algorithm and the proof can be found in Appendix A.

Volume function of a split DTA. We have the following result.

Proposition 1. Given a split DTA A and n ∈ N, denote by c the maximal
dimension of an entry zone of A. One can compute the volume function vk for
k ≤ n in time and space complexity O(nc+2|QA|) using dynamic programming
based on the recursive equation (3). Each volume function vk restricted to a
location q is a polynomial of degree at most k that is positive on Zq.

0 1 2

1

2

3

l0

0 1 2

1

2

3

l1
0 1 2

1

2

3

3

4

l2

0 1 2

1

2

3

l3

y := 0

x := 0

y := 0, δ y := 0

y := 0
x := 0

y := 0

x := 0

Fig. 3. The split form of the running example (Example 1).

7 We recall that the clocks are bounded by a constant M .
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Example 2. We have implemented the splitting algorithm sketched in Section
3 and applied it to the DTA of Fig. 2 (Right) to obtain the DTA of Fig. 3.
Our program also returns for each transition δ of the output DTA the interval
(lbδ,ubδ), allowing us to compute with SageMath the operator Ψ as well as the
volume functions. On the example, for f : S→ R, (x, y) ∈ Zl with l ∈ {l0, . . . , l3},

Ψ(f)[l0, (0, 0)] =
∫ 1

0
f(l1, (t, 0))dt+

∫ 2

0
f(l2, (0, t))dt+

∫ 2

1
f(l3, (t, 0))dt;

Ψ(f)[l1, (x, 0)] =
∫ 1−x
0

f(l1, (x+ t, 0))dt+
∫ 2

0
f(l2, (0, t))dt+

∫ 2−x
1−x f(l3, (x+ t, 0))dt;

Ψ(f)[l2, (0, y)] =
∫ 1

0
f(l1, (t, 0))dt+

∫ 2−y
0

f(l2, (0, y + t))dt+
∫ 2

1
f(l3, (t, 0))dt;

Ψ(f)[l3, (x, 0)] =
∫ 3−x
0

f(l2, (0, t))dt+
∫ 2−x
0

f(l3, (x+ t, 0))dt.

First volume functions computed using Equation (5) are given in Table 1.

4 Sampling methods for timed languages of DTAs

In this section we consider random sampling of timed words. We first give a
method that achieves exact uniform sampling when the length of timed words
to be generated is finite; we speak of finite horizon. When the length is infinite
or too long to be treated by the previous method, we consider a receding horizon
method, where, at the k-th step of the generation, the next timed letter is chosen
according to the volume of the timed words for the next m steps; these possible
futures constitute a finite receding horizon. At the limit, where the receding
horizon becomes infinite (m→∞), this can be interpreted as a stochastic process
over runs of maximal entropy [6].

Parametric probability distributions. A discrete probability distribution (DPD)
on a finite set A is a function dpd : A → [0, 1] such that

∑
a∈A dpd(a) = 1. A

probability density function (PDF) on an interval (a, b) is a Lebesgue measurable

function pdf : (a, b) → R≥0 such that
∫ b
a
pdf(t)dt = 1. Values of DPD and

PDF are referred to as weights. The DPD isoDPD(A) on a set A (resp. the
PDF isoPDF(a, b) on an interval (a, b)) that attributes the same weight to every
a ∈ A (resp. t ∈ (a, b)) is called isotropic. In other words, isoDPD(A)(a) = 1/|A|
for every a ∈ A (resp. isoPDF(a, b)(t) = 1/(b − a) for every t ∈ (a, b)). PDFs
considered in the following are just polynomials on the delay variable t. Their
coefficients depend on the current state (location and clock values) and on the
transition to fire. Choosing a delay t according to a PDF can be done using
the inverse method : a random number r is drawn uniformly in (0, 1), and the

output t ∈ (a, b) is the unique solution of
∫ t
a
pdf(t′)dt′ − r = 0. In the case of

the isotropic PDF on (a, b), the output t is just a+ r(b− a).
Random generation of timed words in Ln(s) for a given state s ∈ S is

done as follows: for k = 1..n, pick randomly the next transition δ according
to a DPD dpdks parametrised by the current state s, then chose the delay t in
(lbδ(s),ubδ(s)) according to a PDF pdfks,δ parametrised by the current state s
and the transition just chosen; take the successor of s by (t, δ) as the new current
state s; output (t, aδ) and repeat the loop.
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This random generation outputs timed words of Ln(s) with weights given by

Weight[(t1, a1) · · · (tn, an)]
def
=

n∏
k=1

dpdksk−1
(δk)pdfksk−1,δk

(tk). (8)

where, for every k = 1..n, sk−1 is the state before the kth sampling loop, (tk, δk)
is the kth timed transition randomly picked during the kth sampling loop and
ak is the label of δk.

Isotropic and uniform sampling. Isotropic sampling8 relies on using in each step
the isotropic DPD isoDPD(∆(s)) and the isotropic PDF isoPDF(I(s, δ)). These
distributions are particularly simple to sample, but when the length of samples
grows the probability concentrates on small sections of the runs, see Fig. 4 (Left).

By contrast, uniform sampling for Ln(s) assigns the same weight 1/vn(s)
to every timed word. In other words, for any measurable set B ⊆ Ln(s) the
probability Vol(B)/vn(s) to fall in this set is proportional to its measure Vol(B).

The recursive method for exact uniform sampling. The idea of the recursive
method for uniform sampling of n-length timed words from a state s is to choose
the first delay t and transition δ according to well chosen DPD and PDF that
depend on the volume functions vn and vn−1, and then recursively apply uniform
sampling to generate an (n−1)-length timed word from the updated state s(t,δ).

Define, for every function f : S → R>0 and state s, the DPD ω(f, s) : δ 7→
Ψδ(f)(s)
Ψ(f)(s) . If moreover δ is given, define the PDF ϕ(f, s, δ) : t 7→ f(s(t,δ))

Ψδ(f)(s)
from

(lbδ(s),ubδ(s)) to R>0.

Method 1 (Exact uniform sampling) Given a split DTA and n ∈ N, pre-
compute the volume functions v0 = 1, . . . , vn = Ψn(1) (see Proposition 1), then
the uniform sampling of n-length timed words can be achieved in linear time us-
ing the following sequences of DPDs and PDFs: (ω(vn−k, s), ϕ(vn−k, s, δ))k=1..n

Proof. Using the same notation as in (8), it holds that

Weight[(t1, a1) · · · (tn, an)] =

n∏
k=1

ω(vn−k, sk−1)(δk)ϕ(vn−k, sk−1, δk)(tk)

=

n∏
k=1

Ψδ(vn−k)(sk−1)

vn−k+1(sk−1)

vn−k(sk)

Ψδ(vn−k)(sk−1)
=
v0(sn−1)

vn(s0)
=

1

vn(s0)
.

Example 3. We illustrate the DPDs and PDFs used in the last but one step of
the uniform random sampling for the running example, obtained from volume
functions of Table 1. Consider the state s = (l1, (x, 0)) with x ∈ (0, 1) and δ

8 Note that some works, consider instead sampling the delay first and then the tran-
sitions available in the state updated by the delay (see [8]).
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the self-loop on l1 (see Fig. 3). Then (lbδ(s),ubδ(s)) = (0, 1 − x) and s(t,δ) =
(l1, (x+ t, 0)). The DPD used to choose δ is

dpdn−1s (δ) =
1

v2(s)

∫ ubδ(s)

lbδ(s)

v1(s(t,δ))dt =

∫ 1−x

0

4− x− t
15− 4x

dt =
7− 8x+ x2

30− 8x

The PDF used to choose t is

pdfn−1s,δ (t) =
1t∈(lbδ(s),ubδ(s))

dpdn−1s (δ)

v1(s(t,δ))

v2(s)
= 1t∈(0,x)

8− 2x− 2t

7− 6x+ x2

Random sampling with finite receding horizon. With the previous method, the
k-th timed transition of a run of length n is sampled according to DPD and
PDF that depend on k and n. This dependency on k and n is not suitable for
large n as it requires storage of as many polynomials as the length of the run
to generate n. Also, one might wish to randomly generate arbitrarily long runs
without a prescribed bound on the length. To take the kth timed transition in
the recursive method for uniform sampling, we use DPD and PDF that depend
on vn−k, that is, on the volume measure of the possible (n− k) step future. The
idea of the following method is to replace (n − k) by a fixed m � n at every
step of the sampling. The constant m can be seen as a receding horizon used in
control theory [15]. At each step we consider only the possible m step future to
generate the next timed transition.

Method 2 (Random sampling with finite receding horizon m) Given a
split DTA, n ∈ N and m ∈ N, precompute the volume functions v0 = 1, . . . , vm =
Ψm(1) (see Proposition 1), then sample n-length timed words in linear time using
the same DPD ω(vm, s) and PDF ϕ(vm, s, δ) for every k = 1..n.

The precomputation is polynomial in m, and hence this methods is more
efficient than Method 1 when m � n, but it does not yield exact uniform
sampling.

Quasi-uniform random sampling. We now present a trade-off between exact uni-
form sampling (Method 1) and the finite receding horizon sampling (Method 2).
We give bounds on the distance to uniformity for this method, which we con-
jecture to be small in practice for small horizon m. This conjecture is supported
by theoretical results of previous works [3,6] recalled in Appendix B and by
practical experiments (notably in Example 4 below).

Method 3 (Switching method for quasi-uniform sampling) Given a split
DTA, n ∈ N and m ∈ N, precompute the volume functions v0 = 1, . . . , vm =
Ψm(1) (see Proposition 1), then generate the n−m first letters as in Method 2
and use exact uniform sampling from the current state for the last m steps as in
Method 1.

This method ensures quasi-uniform sampling in the following sense.
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m (C+/C−)− 1 n0.01

0 3 1
1 0.3229 2
2 1.659× 10−2 3
3 4.444× 10−3 6

m (C+/C−)− 1 n0.01

4 3.272× 10−4 35
5 8.431× 10−5 124
6 9.308× 10−6 1 076
7 1.409× 10−6 7 069

m (C+/C−)− 1 n0.01

8 2.364× 10−7 42 098
9 2.520× 10−8 394 801
10 5.304× 10−9 1.8760× 106

11 4.487× 10−10 2.2178× 107

Table 2. Table for Example 4.

Theorem 2. If in Method 3 there exist constants C−, C+ ∈ R>0 such that
C−vm+1 ≤ vm ≤ C+vm+1, then the weight of every timed word lies in the
interval [(1−εm,n)/vn(s0), (1+εm,n)/vn(s0)], with εm,n = (C+/C−)(n−m−1)−1.

Example 4. For the running example (Example 1) we determine the tightest

constraints C−
def
= infs∈S vm(s)/vm+1(s) and C+ def

= sups∈S vm(s)/vm+1(s) for
m = 0..11. We observe empirically that C+/C− tends to 1 exponentially fast
when m grows (see Table 2). Given a maximal tolerated error of ε, one can
determine for every m the maximal n, called nε, such that εm,n ≤ ε for every

n ≤ nε; formally, nε
def
= m + 1 + blog(C+/C−)(1 + ε)c. First values of n0.01 as

a function of m are given in Table 2; for instance, using receding horizon for
m = 11 one can generate timed words of length 20, 000, 000 with a divergence
to uniformity less than 1%.

Isotropic Receding horizon m=0 Receding horizon m=9
Fig. 4. Trajectories of the running example (Fig. 3) sampled using isotropic sampling
(Left) and Method 2 with receding horizon m = 0 (Middle) and m = 9 (Right). Each
point of a given colour corresponds to a clock vector where a transition of that colour
occurs. Each plot visualises a single trajectory with 200, 000 transitions. The receding
horizon m = 9 visibly yields the most uniform sampling. The receding horizon sampling
with m = 0 is already more uniform than the isotropic sampling as the former assigns

weights to transitions proportional to lengths of intervals
(
dpds = ubδ(s)−lbδ(s)

v1(s)

)
.

Our sampling method requires the computation of a complete zone graph,
as opposed to on-the-fly techniques used in state-of-the-art statistical model
checkers; this is the price we pay for statistical evaluation of quantities of timed
words in complex sub-languages as described in the next section.
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5 Applications and experiments

5.1 Tackling general timed languages

It is well known that language inclusion for languages recognised by non-deterministic
TAs (NTAs) is undecidable, even when a robust semantics is considered [12].
The situation is even worse for stopwatch automata, hybrid automata, etc., for
which the reachability problem is undecidable. However, we can handle a sta-
tistical variant of the inclusion problem when, first, an overapproximation of
the language described by a DTA is known and, second, the languages admit
decision procedures for the membership problem defined as: given a language L
and a word w, is w ∈ L? Our method is based on statistical volume estimation
that relies on the quasi-uniform random sampling developed in the previous sec-
tion. The complexity results given below are expressed in terms of the number
of membership queries one has to solve.

Application 1 (Statistical volume estimation) Given a timed language L,
n ∈ N, a confidence level θ, an error bound ε, and an over-approximation
of the language recognised by a DTA C, that is, Ln ⊂ Ln(C), define N ≥
(1/ε2) log (θ/2) (Chernoff-Hoeffding bound); draw N samples uniformly at ran-
dom in Ln(C) and answer N queries for membership in L to return a value p
such that Vol(Ln)/Vol(Ln(C)) lies in [p− ε, p+ ε] with confidence 1− θ.

Application 2 (Inclusion measurement) Given two timed languages L′, L′′
and an over-approximation of the two languages recognised by a DTA C one can
use the previous application with L = L′\L′′ to evaluate the volume Vol(L′n\L′′n).
If a positive value is returned, a timed word in L′n \ L′′n has been detected and
one can surely claim L′n 6⊆ L′′n. Otherwise, a null value allows one to claim
with confidence 1− θ that either the inclusion holds or the difference of the two
languages is smaller than εVol(Ln(C)).

Application 3 (Uniform sampling) Given a timed language L and n ∈ N,
and an over-approximation of the language recognised by a DTA C, that is, Ln ⊆
Ln(C), draw samples uniformly at random in Ln(C) until one falls in Ln.

The sampling is uniform: every timed word of Ln has the same density of
probability to be output. The expected number of samplings in Ln(C) to sample
one timed word in Ln is Vol(Ln)/Vol(Ln(C)). The choice of C is crucial, since
if Ln(C) is a too coarse approximation of Ln the probability of a sample from
Ln(C) to be in Ln is small and the methods become inefficient. One way to
construct such an automaton is to remove constraints and clocks from an NTA
A that recognises L and merge states.

5.2 Implementation and experiments

We implemented the techniques using three tools: PRISM [14], SageMath [18]
and COSMOS [4]. The workflow is depicted in Fig. 5. We modify the tools to
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meet our needs. We adapted PRISM’s forward reachability algorithm to imple-
ment the splitting algorithm of Section 3. We also export the split zone graph in
a file format easy to read for SageMath. We use SageMath to compute distribu-
tions and weights of transitions as rational functions of clock valuations, which
are exported and read by COSMOS in the form of a Stochastic Petri Net with
general distributions. COSMOS then samples trajectories of this model, checks
the membership of the language of a given NTA, and returns the probability.
We have modified COSMOS to handle distributions given by arbitrary rational
functions and to compute the membership of a timed word in an NTA. Our
implementation can be found at http://qav.cs.ox.ac.uk/subm/QEST16.zip.

Zone

Graph

COSMOS

model

Trajectory
DTA

NTA

ProbabilityForward
Reachability

Splitting
Volume and
Distribution
Computation

Sampling Membership

PRISM SageMath COSMOS

Fig. 5. Tool workflow. For the running example (Example 1), the DTA is the automaton
in Fig. 2 (Left), the zone graph is the automaton in Fig. 3, the COSMOS model is the
zone graph annotated with probability distributions as described in Example 3, and
examples of trajectories are depicted in Fig. 4.

z := 0

a

x := 0

b, x ≥ 1

y := 0

a, x ≤ 3 ∧ y ≥ 1

z ≤ 10

a, ba, b a, b a, b

l1 l2 l3 l4

Fig. 6. Automaton B for Example 5. Every transition has a guard z ≤ 10 omitted.

Example 5. Let A be the DTA of the running example (Example 1). The NTA
B of Fig. 6 recognises the timed words that contain aba as a subword within
the first 10 time units, where the latter a occurs at most 3 time units after
the former and there is at least 1 time unit between b and both as. We have
estimated Vol(L10(A) ∩ L10(B))/Vol(L10(A)) by implementing Application 1.
Sampling was performed using Method 2 with m = 5. The result is in the interval
[0.679, 0.688] with confidence level 0.99; 58, 000 simulations were used in 5s.

A case study. We additionally consider a larger case study of a failure and repair
system modelled as an NTA (see Appendix C for more detail). We consider a
model with K machines that need to be fully repaired for the overall system to
work properly. Each machine contains N levels of failure and can fail at most nb
times between two full repairs. The model is implemented by an NTA A with
Nnb locations and K + 1 clocks. The property we are interested in is encoded
in another NTA B with 4 locations and 2 clocks. We apply our method by
over-approximating the NTA A with a DTA C with M = KN locations and
2 clocks. The results are reported in Table 3. We use our approach to sample
timed words of the DTA C and check their membership in the languages of
A and B. We compare receding horizon sampling to isotropic sampling. We
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M Receding horizon Isotropic
Pre Time #Zones Sim Time P(B|A) P(A|C) Sim Time P(B|A) P(A|C)

4 45s 380 133s 0.999977 0.86539 36s 0.990439 0.03347
6 99s 581 369s 0.997717 0.58701 39s 0.975795 0.05123
8 219s 783 5005s 0.930944 0.06111 56s 0.995179 0.07052
10 417s 985 5773s 0.509091 0.00275 55s 0.999893 0.09325
12 745s 1187 7954s 0.0344828 0.00029 64s 1 0.1019

Table 3. Result of receding horizon sampling compared to isotropic sampling for the
case study with two machines (K = 2). “Pre Time” is the pre-computation time, “Sim
Time” is the simulation time. The meaning of M , P(A|C) and P(B|A) is described in
the text. The receding horizon is 8 +M . The number of samples is 100, 000.

observe that for isotropic sampling the probability for a timed word in L(A)
to be in L(B) (P(B|A)) tends to 1 quickly when M increases, which, for large
values of M , might be interpreted as an inclusion of the languages. On the other
hand, with the receding horizon sampling the same probability (P(B|A)) tends
to zero, which shows that the model does not satisfy the property. This result
demonstrates the necessity of (quasi)-uniform sampling to explore the behaviour
of the model, since the results of isotropic simulation significantly diverge from
those of (quasi)-uniform simulation, and thus do not yield reliable information
about the system.

We also observe that the probability for timed words in the over-approximation
L(C) to fall in L(A) (P(A|C)) tends to zero, meaning that it becomes too crude
for large values of M . Thus, tight over-approximations are important to obtain
efficient simulation of an NTA through a DTA.

The time required for receding horizon simulation is high compared to isotropic,
since it requires sampling of complex distributions involving many polynomials.

6 Conclusion and further work

We have developed the foundations for the practical application of volumetry of
timed languages to quantitative and statistical verification of complex properties
for TAs. We implemented our work in a tool chain and provide first experiments.

On the theoretical side, we want to show that constants in Method 3 and
Theorem 2 can be chosen to guarantee arbitrarily small divergence from exact
uniform sampling and consider extending the theory to probabilistic TAs. We
would also like to implement membership checking in COSMOS for general timed
languages (e.g. recognised by stopwatch automata, LHA, etc.).

In the framework of robust control [16], timing imprecision of real-world
timed systems is modelled by an adversary that chooses at each step a small
perturbation to apply to the delay. The main challenge left open by these works
is to detect so-called forgetful cycles in an efficient way, as their presence corre-
sponds to robust controllability. In [3], a quantitative pumping lemma states that
long uniformly sampled runs visit forgetful cycles with high probability. Thus,
we would like to apply the methods developed here to efficiently find forgetful
cycles and synthesise robust controllers.
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Omitted proofs and results are given in the appendix below, each section
corresponds to a section of the paper. We first recall definitions on regions as
they are used in several section below.

A region is a zone which is minimal with respect to set inclusion (e.g. the set
of points (x1, x2, x3, x4) which satisfy the constraints 0 = x2 < x3−4 = x4−3 <
x1 − 2 < 1).

The TA decomposed in zones is decomposed into regions if all the entry zones
and guards are regions.

A Additional material and proofs for Section 3

We first give in Section A.1 additional notations for operation on zones; then
in Section A.2 we describe the splitting algorithm sketched in the main text, in
Section A.3 we prove Theorem 1; finally we prove Proposition 1 in Section A.4.

A.1 Operations on zones and almost partition of zones

We describe several usual operations on zones and introduce the notion of almost
partition (we also apply these operations to guards, identifying a guard with the
zone it describes): (i) Time Elapse (TE) represents the zone where we allow the
time to pass as much as we want : x ∈ TE(Z) ⇔ ∃x′ ∈ Z, t ≥ 0,x = x′ + t;
(ii) TE−1 is the dual operation of TE : x ∈ TE−1(Z) ⇔ ∃x′ ∈ Z, t ≥ 0,x =
x′ − t ∧ x ≥ 0; (iii) rδ(Z) = {rδ(x)|x ∈ Z}: the zone obtained from Z by
resetting clocks according to rδ; (iv) r−1δ (Z) = {x | rδ(x) ∈ Z}; (v) POST(Z, δ) =
rδ(gδ ∩ TE(Z)): the zone of clock vectors reached after having taken a timed
transition (t, δ) from a state (δ−,x) with x ∈ Z. Note that the condition of
being decomposed into zones {rδ(x + t) | x ∈ Zδ− ,x + t ∈ gδ} ⊆ Zδ+ can be
rewritten as POST(Zδ− , δ) ⊆ Zδ+ .

We write Z ′ ⊆full-dim Z if Z ′ ⊆ Z and Z ′ and Z have the same affine dimen-
sion. This can be checked algorithmically as Z ′ ⊆full-dim Z iff Z ′ ⊆ Z and every
equality between clocks induced by the definition of Z ′ is an equality induced
by the definition of Z. For a zone Z we denote by Z its topological closure, that
is, obtained by making all strict inequalities non-strict in its definition. A finite
family of n zones {Zi}i∈1..n is an almost partition of a zone Z if Zi ⊆full-dim Z
and Zi ∩ Zj = ∅ for every 1 ≤ i < j ≤ n and ∪ni=1Zi = Z.

A.2 Algorithms

Forward reachability algorithm The location of a TA decomposed into zones
are called loczone. The forward reachability algorithm (Algorithm 1) consists in
discovering step by step all the loczone reachable from the initial state like in a
graph traversal.

Proposition 2. Algorithm 1 on a TA A produces a TA A′ decomposed into
zones that recognises the same language as A.
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It is well known since the work of Bouyer9that forward reachability algorithm
for general TAs do not terminate in general as infinitely many distinct zones can
be produced. This problem cannot occur here as the clocks are bounded by a
constant M and hence the algorithm can produce only finitely many zones.

Algorithm 1 Forward reachability algorithm

to explore:= {(q0, {0})}; loczones := {(q0, {0})}; ∆′ := ∅
while to explore is not empty do

pop a loczone (q, Z) from to explore;
for all δ such that δ− = q do

if (δ+, POST(Z, δ)) 6∈ loczones then
Add (δ+, POST(Z, δ)) to loczones and to to explore

Add a new transition δ(q,Z),(δ+,POST(Z,δ)) to ∆′ from loczone (q, Z) to

(δ+, POST(Z, δ)) with guard gδ and reset rδ and label aδ.

The splitting algorithm The splitting algorithm (Algorithm 2) sketched in
the main text consist in maintaining a set of candidate transition to be checked
and check them all (and split zones and guards when needed) until the set is
empty. At each loop, the pre-stability condition Zδ− ⊆ TE−1(gδ) is first checked.
When it fails SplitZone() is called and the loczone is split accordingly into several
loczones, then the function UpdateLocZone is called on each loczone to update
the guard of incoming and outgoing transition so that the resulted TA is still
decomposed into zones. When the condition Zδ− ⊆ TE−1(gδ) is satisfied then
SplitGuard(δ) (Algorithm 3) is called. It returns a list of open guards that is
an almost partition of the guard gδ such that each guard of the list is split. If
the list contains only one guard (necessarily gδ) then the guard is already split
and nothing is done. Otherwise the transition is split into several transitions one
for each sub-guard of the list which are added to the set of candidates (these
candidates when treated will then make the zone split into several sub-zones
during SplitZone()).

We now give further details on SplitGuard().

The guard splitting algorithm The algorithm SplitGuard() (Algorithm 3)
takes as input a transition δ and returns a set of split guards that is an almost-
partition of the guard of the input transition. The first phase is the upper-
splitting: for each useful upper-constraint xi < a0,i, we create a guard where
xi < a0,i is the unique useful upper-constraint by adding the constraints xi−xj <
a0,i − a0,j , where xj < aj,0 are the other useful lower-constraints (that become
useless). In the second phase we similarly perform lower-splitting for each guard
created during the upper-splitting. We add the resulting guards to the output
set (removing the duplicates).

9 Patricia Bouyer. Untameable timed automata! STACS 2003
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Algorithm 2 The splitting algorithm

Require: A TA A decomposed into zones.
Ensure: Returns A in split form.
1: cand:= transitions(A);
2: while cand is not empty do
3: pop a transition δ from cand;
4: if Zδ− 6⊆ TE−1(gδ) then
5: SplitZone(δ);
6: newGuards:=SplitGuard(δ);
7: if Size(newGuards)> 1 then
8: for all guards g ∈ newGuards do
9: Create transition δg with guard g, origin δ−, destination δ+ and label aδ.

10: Add δg to cand;

A.3 Proof of Theorem 1

To prove Theorem 1 we have to prove that the algorithm terminates, that the
DTA produced is split and that it recognises a tight under-approximation of the
timed language of the input DTA. For this we introduce the notion of refinement
of a DTA below. We show the following assertion:

A1 The refinement relation is a well founded order (Proposition 3).
A2 Given a DTA A, Algorithm 2 returns a DTA A′ that is split and that is a

refinement of A (Proposition 5).
A3 Refinement yields tight under-approximation of languages (Proposition 4);

From the two last assertions the result follows.

Refinement of a TA Given two TAs A,A′ decomposed into zones, if there
exists a pair of surjective functions ϕ1 : QA′ → QA, ϕ2 : ∆A′ → ∆A such that
the following conditions are satisfied, then we say that A′ is a refinement of A
via (ϕ1, ϕ2), and denote this by A �(ϕ1,ϕ2) A′ (or just A � A′).

R1 For every δ′ ∈ ∆A′ , ϕ2(δ′)
−

= ϕ1(δ′
−

), ϕ2(δ′)
+

= ϕ1(δ′
+

), rδ′ = rδ, gδ′ ⊆
gϕ2(δ′) and aϕ2(δ) = aδ.

R2 For every l ∈ QA it holds that {Zl′ |l′ ∈ ϕ−11 (l)} is an almost partition of Zl.
R3 For every l′ ∈ QA′ , for every δ ∈ ∆A such that δ− = ϕ1(l′) and gδ∩TE(Zl′) 6=
∅, it holds that {gδ′ ∩ TE(Zl′) | δ′− = l′ ∧ ϕ2(δ′) = δ} is an almost partition
of gδ ∩ TE(Zl′).

R4 ϕ1(iA′) = iA

Proposition 3. � is a well-founded order and every sequence of pairwise dis-
tinct TA A0 � · · · � An satisfies n ≤ |QA0 |.RM,X + |∆A0 |.R2

M,X with RM,X the
number of regions on clocks bounded by M .

We first prove that � is an order by showing transitivity (Lemma 1) and
(Lemma 2). Reflexivity is straightforward A �(idQA ,id∆A ) A where for a finite
set E, we write idE the identity function on E.
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Algorithm 3 SplitGuard(δ)

Require: A transition δ.
Ensure: Guards in set result are split and form an almost partition of gδ.

set result:=empty set of guards;
compute useful constraints using Floyd-Warshall Algorithm;
for i = 1 to n do

if xi < a0,i is a useful constraint of gδ then
add i to lbs;

for i = 1 to n do
if −xi < ai,0 is a useful constraint of gδ then

add i to ubs;
for all l ∈ lbs do

for all u ∈ ubs do
create a copy g′ of gδ;
for all j ∈ lbs \ {l} do

add the constraint xj − xl < a0,l − a0,j to g′;
for all j ∈ ubs \ {u} do

add the constraint xu − xj < aj,0 − au,0 to g′;
if g′ is not empty then

add g′ to set result;
return set result;

Algorithm 4 SplitZone(δ)

Require: A transition δ such that Zδ− 6⊆ TE−1(gδ)
Ensure: The returned TA is a refinement of the original TA and they are different.
1: newZones := {Z | Z ⊆ Zδ− \ TE−1(gδ) ∧ Z ⊆full-dim Zδ−}
2: for all Z in newZones do
3: Create a new location lZ with associated zone Z
4: UpdateLocZone(lZ)
5: Zδ− := TE−1(gδ) ∩ Zδ−
6: UpdateLocZone(δ−)

Lemma 1 (Transitivity). If A �(ϕ1,ϕ2) A′ and A′ �(ϕ′1,ϕ
′
2)
A′′ then A �(ϕ1◦ϕ′1,ϕ2◦ϕ′2)

A′′

Proof. R1 is straightforward, R2 is proven by noting that almost partition can
be composed as classical set partition. We prove R3: Let l′′ ∈ QA′′ , δ ∈ ∆A such
that δ− = ϕ1◦ϕ′1(l′′) and gδ∩TE(Zl′′) 6= ∅. We denote by l′ = ϕ′1(l′′). It holds that
δ− = ϕ1(l′) and gδ ∩ TE(Zl′) 6= ∅ (as Zl′′ ⊆ Zl′). Hence {gδ′ ∩ TE(Zl′) | δ′− = l′}
is an almost partition of gδ ∩ TE(Zl′). For every δ′ such that δ′

−
= l′ and

gδ′ ∩ TE(Zl′′) 6= ∅ it holds that {gδ′′ ∩ TE(Zl′′) | δ′′− = l′′} is an almost partition
of gδ′ ∩ TE(Zl′′). Moreover {gδ′ ∩ TE(Zl′′) | δ′− = l′ ∧ gδ′ ∩ TE(Zl′′) 6= ∅} is an
almost partition of gδ ∩ TE(Zl′′) (this comes from the fact that {gδ′ ∩ TE(Zl′) |
δ′
−

= l′∧gδ′ ∩TE(Zl′) 6= ∅} is an almost partition of gδ ∩TE(Zl′) and Zl′′ ⊆ Zl′).
It then holds as required that {gδ′′ ∩ TE(Zl′′) | δ′′− = l′′} is an almost partition
of gδ ∩ TE(Zl′′).
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Algorithm 5 UpdateLocZone(l)

Require: A location l of a TA A decomposed into zones.
Ensure: ∀δ s.t. δ− = l, gδ ⊆ TE(Zl) ∧ ∀δ s.t. δ+ = l, r(gδ) ⊆ Zl
∧ ∀δ (gδ 6= ∅ ∧ gδ has been modified)⇒ δ ∈ cand

1: for all outgoing transitions δ of l do
2: gδ := gδ ∩ TE (Zl)
3: if gδ 6= ∅ then
4: Add δ to cand

5: for all incoming transitions δ of l do
6: gδ := gδ ∩ r−1

δ (Zl)
7: if gδ 6= ∅ then
8: Add δ to cand

Lemma 2 (Antisymmetry). If A � A′ and A′ � A then A and A′ are equal
up to renaming bijectively locations and transitions.

Proof. Assume that A �(ϕ1,ϕ2) A′ and A′ �(ϕ′1,ϕ
′
2)
A. ϕ1 : QA′ → QA and ϕ′1 :

QA → QA′ , are surjective functions, hence QA and QA′ have same cardinalities
and thus ϕ1 and ϕ′1 are bijective. The same reasoning hold for ϕ2 and ϕ′2 that are
hence also bijective. Using R2 we have that for every l ∈ QA, Zϕ−1

1 (l) = Zl. We

now take δ′ ∈ ∆A′ and show that gδ′ = gϕ2(δ′). ϕ
′
2 ◦ ϕ2 is a permutation of the

finite set ∆A′ , so, there exists some integer k such that (ϕ′2 ◦ϕ2)k(δ′) = δ′. Using
R1 several times gδ′ ⊆ gϕ2(δ′) ⊆ g(ϕ′2◦ϕ2)k(δ′) = gδ′ hence all these inclusions are
in fact equalities.

We now prove the statement regarding the length of decreasing subsequences.
Given a TA decomposed in zone A, we construct a TA Reg(A) decomposed into
region as follows: let SReg(A) = ∪l∈QA∪r⊆full-dimZl lr×r. For every transition δ, for
every region r ⊆full-dim Zδ− and region g ⊆full-dim gδ, if TE(r) ∩ g 6= ∅ then add
a transition δr,g to ∆Reg(A) with guard g origin (δ−)r and destination (δ+)rδ(g).

The end of the proof of Lemma 3 relies on the two following lemmas.

Lemma 3 (Minimality of Reg(A)). If A � A′ then A′ � Reg(A).

Proof. Let (ϕ1, ϕ2) such that A �(ϕ1,ϕ2) A′. We define (ϕ1, ϕ2) such that
A′ �(ϕ1,ϕ2) Reg(A). For l ∈ QA and r ⊆full-dim Zl, by R2, there is ex-
actly one location in QA, let us call it ϕ′1(lr) such that r ⊆full-dim ϕ

′
1(lr) and

ϕ′1(lr) ∈ ϕ−11 (l). For every transition δ ∈ ∆A, for every region r ⊆full-dim Zδ−
and region g ⊆full-dim gδ satisfying TE(r) ∩ g 6= ∅, we will use R3 noting that
ϕ′1((δ−)r) ∈ QA′ and ϕ1(ϕ′1((δ−)r)) = δ− and gδ ∩TE(Zϕ′1((δ−)r)) = gδ ∩TE(r) 6=
∅. By R3, there is exactly one transition, let us call it ϕ′2(δr,g), such that

gϕ′2(δr,g) ⊆ gδ and ϕ′2(δr,g)
−

= ϕ′1((δ−)r) and ϕ2(ϕ′2(δr,g)) = δ. One can show
that A′ �(ϕ′1,ϕ

′
2)

Reg(A).

Lemma 4. If A � A′ and A′ 6� A then |QA|+ |∆A| < |QA′ |+ |∆A′ |
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Proof. Assume that A �(ϕ1,ϕ2) A′. As ϕ1 and ϕ2 are surjective then |QA| ≤
|QA′ | and |∆A| ≤ |∆A′ | and hence |QA| + |∆A| ≤ |QA′ | + |∆A′ | with equality
if and only if these two functions are bijective. Assuming now that the two
functions are bijective one can show that A′ �(ϕ−1

1 ,ϕ−1
2 ) A using the fact that

almost partition are reduced to only one element and hence identifies zones
and guards of the two TAs bijectively. Hence if A � A′ and A′ 6� A then
|QA|+ |∆A| < |QA′ |+ |∆A′ | .

End of the proof of Proposition 3 From these two last lemmas, we deduce that
every decreasing sequence for � has length bounded by |QReg(A0)|+ |∆Reg(A0)|.
Reg(A0) contains less than |QA0

|.RM,X locations and less than |∆A0
|.R2

M,X

transitions. At the end, the length of the decreasing sequence is upper bounded
by |QA0

|.RM,X + |∆A0
|.R2

M,X .

Proposition 4. If A′ is a refinement of A then L(A′) is a tight under-approximation
of L(A).

Proof. To every timed path (t1, δ
′
1) · · · (tn, δ′n) of A′ can be associated the timed

path of A (t1, ϕ2(δ′1)) · · · (tn, ϕ2(δ′n)) that has exactly the same timed word
(t1, aδ′1) · · · (tn, aδ′n) as labels. Hence L(A′) ⊆ L(A).

We now show that Vol(P
L(A)
w \ PL(A

′)
w ) = 0 for every w ∈ Σ∗. Let w =

w1 · · ·wn be a word such that Vol(P
L(A′)
w ) 6= 0 (otherwise the result is trivial).

We proceed in the opposite way as before by mapping timed paths of A that
yield timed words of L(A) to timed path of A′ that yield timed words of L(A′).
From a timed path (t1, δ1) · · · (tn, δn), we define by s0, s1, . . . , sn the sequence of
visited states where s0 is the initial state and si+1 = (si)(ti+1,δi+1). Using defi-
nition of a refinement (R3) one can remark that for every state s = (q,x) and
timed transition (t, δ) such that s . (t, δ) 6= ⊥, for every s′ = (q′,x) there is at
most one timed transition (t, δ′) such that ϕ2(δ′) = δ and s′(t,δ) 6= ⊥. The only
case where such transition does not exist is when the clock vector associated to
s(t,δ) does not belong to any of the zone forming the almost-partition of Zδ− .
This can only occur at a border of a zone and such border has null volume. More
precisely in such border a difference of clock value or a clock value is equal to
an integer (for instance x1 − x2 = 3). Remark that both such quantities are of

the form
∑k
i=j ti = m with j ≤ k ≤ n and m ∈ N. We denote by Aj,k,m the

hyperplane of Rn defined by equation
∑k
i=j ti = m. The set A

def
= ∪j,k,mAj,k,m

has volume null as countable union of null volume sets. We have hence shown
that every delay vector of P

L(A)
w that avoid A is a delay vector of P

L(A′)
w . For-

mally (P
L(A)
w \ A) ⊆ P

L(A′)
w This implies that Vol(P

L(A)
w ) = Vol(P

L(A)
w \ A) ≤

Vol(P
L(A′)
w ), thus Vol(P

L(A)
w \ PL(A

′)
w ) = Vol(P

L(A)
w ) − Vol(P

L(A′)
w ) ≤ 0 and

finally Vol(P
L(A)
w \ PL(A

′)
w ) = 0.

Proposition 5. Given a DTA A, Algorithm 2 returns a split DTA A′ that is a
refinement of A.
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The algorithm terminates when the list of candidate transitions cand is
empty. We denote by Ak the timed automaton just after the kth occurence
of a continue and by A0 the initial timed automaton; We show the following
invariants: (I1) At the evaluation of every while statement every transition not
in cand satisfies the desired properties: its guard is split and Zδ− ⊆ TE−1(gδ),
let us call such transition a good transition. (I2) Ak is decomposed into zones,
Ak � Ak−1 and Ak 6= Ak−1;

Proof of (I1). It suffices to see that

– every transition before the first while statement and every transition created
during the algorithm are added to cand;

– when a transition goes outside cand then it is either deleted either good;
– a good transition with zones (of the origin, destination and guard) that are

not changed during a loop stay good and outside cand;
– At any moment, if one of a zone (of the origin, destination and guard) of a

transition is changed then this transition is added to cand;

Proof of (I2). We show (I2) by induction. At the beginning of the algorithm
the TA is decomposed into zones. Let assume that A0 � . . . � Ak and that
all these TAs are decomposed into zones. If in a loop no continue occurs then
the TA is not changed and no transition are added to cand. So if no more
continue occurs the algorithm ends and (I2) is satisfied until the end. When the
next continue occurs then the TA has been changed and we show that Ak+1 is
decomposed into zones and Ak � Ak+1. Every transitions created or modified
satisfy POST(Zδ− , δ) ⊆ Zδ+ and hence the TA stays decomposed into zones. We
now explicit the couple of functions (ϕ1, ϕ2) such that Ak �(ϕ1,ϕ2) Ak+1. We
define ϕ1 and ϕ2 on non-created and non-deleted states and transitions to be the
identity, in particular ϕ1(sAk+1

) = sAk . The only eventual creations of location
are done in SplitZone; we define ϕ1(lZ) = l. For every transition created during
SplitZone we define ϕ2(δ′Z) = δ′ and for every transition δg (created outside
SplitZone) we define ϕ2(δg) = δ. We now check that condition R1, R2 and R3
of the definition of refinement are satisfied. Condition R1 and R4 are clearly
satisfied. Condition R2 is satisfied as the only zone modified is the one that is
split in an almost partition in Line 1 of SplitZone. To show R3, we note that for
every incoming transition δ′ of a modified zone the guard g′δ is split in an almost-
partition in Line 2 of UpdateLocZone. The other place where a guard is modified
is after SplitGuard(δ) where the guard of δ is also split into an almost-partition
of guards created during SplitGuard(δ).

End of the proof As every decreasing sequence for � is bounded (Lemma 5), the
number of occurrences of continue is bounded as well, hence the total number
of addition of a transition to cand is bounded. As every occurrence of a while
loop removes a transition from cand, necessarily cand is eventually empty and
the algorithm terminates. Due to (I2) and emptiness of cand, the TA returned
has only good transitions and hence is split.

ut
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A.4 Proof of Proposition 1

Remark first that due to splitting and prestability it holds that

Lemma 5. For every split DTA, for all δ (let q be its origin) the two functions
x 7→ lbδ(q,x) and x 7→ ubδ(q,x) are univariate polynomial of degree less than 1
on Zδ− ⊆ TE−1(gδ).

We now proceed the proof of Proposition 1. We do an induction to prove that
the functions vn restricted to any location q are positive polynomial functions
of degree at most n. v0 = 1 is polynomial and positive. Assume that vn−1 is
polynomial and positive and fix a location q. It suffices to show that for every
outgoing edge δ, the function x 7→ Ψδ(vn−1)(x) defined on Zq ⊆ TE−1(gδ) is a
polynomial of degree at most n and positive everywhere on Zq. First remark
that vn−1(q′, rδ(x+ t)) is a polynomial in x of degree at most n − 1, where
q′ is the destination of δ. Let F be a primitive of this latter function. F is
a polynomial of degree at most n and thus using Lemma 5, Ψδ(vn−1)(q,x) =
F (ubδ(q,x)) − F (lbδ(q,x)) is a polynomial of degree at most n − 1. Moreover
as vn−1 is positive and ubδ(q,x))− lbδ(q,x) > 0 we also have that vn is positive
on Zq as required. ut

B Additional material and proofs for Section 4

Location and transition of a TA define a directed graph. The period p of a TA
decomposed into region is the period of this directed graph, that is the gcd of
the length of its cycles. Aperiodic TAs are TAs with period p = 1. For the sake
of simplicity the results of this section are stated with aperiodic TAs but they
can be easily extended to TAs with arbitrary period.

Infinite horizon and maximal entropy stochastic process.

A theoretical quasi-uniform random sampling based on the notion of maximal
entropy was provided in [6]. We now show that it can be interpreted as a limit
case of the receding horizon method Method 2 when the horizon m tends to
infinity. The construction of [6] requires preprocessing of the TA: split the TA
into regions and restrict to strongly connected components. While the former is
costly, the latter is standard and already required in the discrete case of finite
graphs. Moreover, the TA has to be thick : its volume does not decrease faster
than any exponent, namely, its entropy lim supn→+∞(1/n) log (sups∈S vn(s)) is
greater than −∞. As described in [3], thickness can be related in several ways
to robustness, while the absence of thickness induces mathematical pathologies
(weak form of Zenoness).

Theorem 3 (Perron-Frobenius-like theorem for TA, [3]). For thick strongly
connected TA A decomposed into regions, there exists a continuous and bounded
function v ≥ 0 such that Ψv = ρv and v is unique up to a multiplicative constant.
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The following Theorem states that the volume functions, once renormalised, tend
towards the eigenfunction v. It is a consequence of Theorem 15.4 of10, for which
the hypotheses are proved to be satisfied in [3].

Theorem 4 (Convergence in direction of the volume functions). For
thick strongly connected aperiodic TA A decomposed into regions, there exist
constants c ≥ 1 and b < 1 such that, for every s ∈ SA, (1/ρm)vm(s) − cv(s) =
O(bm), where v is described in Theorem 3.

In [6], the maximal entropy stochastic process was defined in terms of weight
of timed transitions (t, δ) from states s (denoted p∗((t, δ)|s)). This weight is

p∗((t, δ)|s) =
v(st,δ)
ρv(s) = ω(v, s)(δ)ϕ(v, s, δ)(t).

Hence sampling according to the maximal entropy stochastic process of [6]
can be interpreted as sampling with infinite receding horizon consisting in using
the DPD ω(v, s) and the PDF ϕ(v, s, δ) instead of the DPD ω(vm, s) and the
PDF ϕ(vm, s, δ) used in the finite receding horizon.

Corollary 1 (Convergence of ω(vm, s) toward ω(v, s) (for fixed state s)).
Consider a thick strongly connected aperiodic TA A decomposed into regions. For
every s ∈ S, there exists a constant bs < 1 such that

sup
δ
|ω(vm, s)(δ)− ω(v, s)(δ)| = O(bms )

and for every δ,

sup
t∈(lbδ,ubδ)

|ϕ(vm, s, δ)(t)− ϕ(v, s, δ)(t)| = O(bms )

where v is described in Theorem 3.

Proof of Theorem 2

Proof. Denote as usual by si the ith state visited during the sampling. For
i ≤ n −m, the ith timed letters has weight ω(vm, si−1)(δi)ϕ(vm, si−1, δi)(ti) =
vm(si)

vm+1(si−1)
. The m last timed letter forms a timed word generated uniformly from

sn−m. Hence the weight of a timed word generated by this method is:

1

vm(sn−m)

(
n−m∏
i=1

vm(si)

vm+1(si−1)

)
=

1

vm(sn−m)

( ∏n−m
i=1 vm(si)∏n−m−1

i=0 vm+p(si)

)

=
1

vm(sn−m)

(
vm(sn−m)

vm+1(s0)

n−m−1∏
i=1

vm(si)

vm+1(si)

)

=
1

vn(s0)

(
n−m−1∏
i=1

vm+i+1(s0)

vm+i(s0)

)(
n−m−1∏
i=1

vm(si)

vm+1(si)

)

=
1

vn(s0)
(1 + ε′)

10 M.A. Krasnosel’skij, E.A. Lifshits, and A.V. Sobolev. Positive Linear Systems: the
Method of Positive Operators. Heldermann Verlag, Berlin, 1989.
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where ε′
def
=
(∏n−m−1

i=1
vm+i+1(s0)
vm+i(s0)

)(∏n−m−1
i=1

vm(si)
vm+1(si)

)
− 1.

Now we note that for all i = 1..n, vm+i+1(s0)
vm+i(s0)

∈
[

1
C+ ,

1
C−

]
and vm(si)

vm+1(si)
∈

[C+, C−]; hence

1 + ε′ ∈
[(
C−/C+

)N−1
,
(
C+/C−

)N−1]
We conclude that ε′ ≤ εn,m as expected. ut

C More details on the case study

In this section we describe formally the case study of section 5.2. We consider
a failure and repair system consisting of K machines running in parallel to
accomplish a task. When all machines are in nominal mode they perform the
task c together, delays between two consecutive such tasks is upper-bounded by
tc. When a failure occurs with b, all machines stop. To restart the system, each
machine undergoes i repair steps (a) independently. During repairs, at most nb
failures may occur, which require an additional repair each. When all machines
have performed their repair they can jointly perform an action c and enter
the nominal mode. Fig. 7 depicts a TA for one machine, where dotted arrows
represent edges synchronised between machines. The product automaton of the
full model A is nondeterministic, as the choice of which machine should take a
transition is unspecified. The language of this automaton is referred to as L(A)
in the following.

The failure and repair system is naturally modelled as a network of TAs that
synchronise. We build the synchronised product of the whole system as a single
large NTA. The time between two repairs is bounded by 2 units of time and
there is an event in each machine, failure or repair, every Evt unit of time.

We aim at checking whether the language L(A) satisfies the property specified
by the NTA B of Figure 8 on its prefixes of length 50. This property specifies
that there exist three timed transitions labelled by a, c and a such that less than
c2 time units expires between the two as and more than c1 time unit between
the c and any of the a.

We build a deterministic over-approximation of the language generated by
this system recognised by a single DTA (refered as automaton C) with weaker
timing constraints (Fig. 9). The quantity M is equal to the number of machines

times N . The time bound tb
def
= (N +nb)×Evt is the maximal time required for

a machine to reach the nominal state.
The experiments on this model use two machines and increasing value for N .

We set the following constants Evt = 8; minRep = 1; c1 = 9; c2 = 20.
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a a a

a a a

a a a

b
b

b b

b b

b

c

c

c

b

c0, 0 1, 0 N − 1, 0

0, 1 1, 1 N − 1, 1

N − 1, nb1, nb0, nb

. . .

. . .

. . .

. . .. . .

. . . . . .
. . .. . .

N

Fig. 7. A component of the product NTA A for the failure and repair model. The
product NTA A is obtained by synchronising the K components along dotted transi-
tions. Transition labelled by a have guard {x > 2, y < Evt} and reset {x := 0, y := 0};
transition labelled by b have guard {y < Evt} and reset {y := 0}; self-loop labelled by
c have guard {y < tc} and reset {y := 0}. Other transitions labelled by c have guard
{y < Evt} and reset {y := 0}.

a,b,c

a, {x := 0} c, {x > c1, x < c2} a, {x > 2c1, x < c2}

a, b, c, {x < c2} a, b, c, {x < c2}
a, b, c

l1 l2 l3 l4

Fig. 8. Property to check for the failure and repair model.

a, {y > minRep, x < tb}, {y := 0}

b, {x < tb}, {x := 0, y := 0}

c, {x < tc}, {x := 0}b, {x < tb}

c, {x < tb}, {x := 0, y := 0}

l1 l2 . . . lMlM−1

Fig. 9. Deterministic abstraction for the failure and repair model.
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